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Abstract— We address the problem of testing complex reactive considerable success. RRT algorithm is an incremental search-
control systems and validating the effectiveness of multi-agent jng algorithm which explores state space fast and uniformly.
c_ontrollers. Testing and valldatlon involve searchmg for con_dl- However, the two problems are different. Perhaps the most
tions that lead to system failure by exploring all adversarial . .. - L
inputs and disturbances for errant trajectories. This problem of significant difference betwegn t_he two problems Ile_s in the
testingis related to motion planning, with one main difference. Nature of the system dynamics in each case. Robotic systems
Unlike motion planning problems, systems are typically not are almost always controllable (by design), so the reachable
controllable with respect to disturbances or adversarial inputs space is often the entire free space. With the exception of
and therefore, the reachable set of states is a sma!l subset Ofany workspace obstacles, whose configurations are known
the entire state space. In both cases however, there is a goal or. )
specification setonsisting of a set of points in state space that is In .Tsldvance, the tree can be expected to extend to fill the
of interest, either for demonstrating failure or for validation. entire state space. On the other hand, when we test complex

In this paper we consider the application of the Rapidly- control systems, it is frequently with respect to disturbances
exploring Random Tree algorithm to the testing a_nd validatior_1 or adversarial inputs. These systems are frequamlycon-
problem. Because of the differences between testing and motionyq|1aple with respect to disturbances or adversarial inputs —

planning, we propose three modifications to the original RRT . - . .
algorithm. First, we introduce a new distance function which in fact, the reachable set is usually a tiny fraction of the

incorporates information about the system’s dynamics to select entire state space. In such systems, the traditional uniform
nodes for extension. Second, we introduce a weighting to penalizesampling distribution, combined with the inherent Voronoi bias
nodes which are repeatedly selected but fail to extend. Thi_rd, of the RRT algorithm, leads to a slow reduction (improvement)
we propose a scheme for adaptively modifying the sampling i, gispersion (coverage). The issue is not easily remedied

probability distribution based on tree growth. We demonstrate . .
the application of the algorithm via three simple and one because, unlike C-space obstacles, the reachable set & not

large scale example and provide computational statistics. Our Priori knO_W”- o o
algorithms are applicable beyond the testing problem to motion ~ Accordingly, we propose three modifications to the original

planning for systems that are not small time locally controllable. RRT algorithm. First, we develop a new distance function
which encodes local information about the system’s dynamic
constraints with a first order approximation. Second, because
the reachable state space is generally a small fraction of
As the use of logic-based or reactive control laws grows the total state space, we introduce a weighting factor which
both robotics and other fields, so does the need for automageathalizes the repeated extension of boundary nodes. Finally,
design and analysis tools. The focus to date in the autwe propose a scheme for adaptively modifying the sampling
mated safety verification literature has been on the solutipmobability distribution between the traditional uniform distri-
of the reachability problem, initially through symbolic methbution and heavily biased toward the specification set based
ods (e.g., [11], [18]) and later through numerical techniquem tree growth.
(e.g., [6], [17]). However, the class of systems for which The paper is organized as follows. In Section II-A we
the reachability problem is tractable is quite limited in botformally define the testing problem. Section II-B reviews the
expressiveness and dimensionality. An alternative approamfiginal RRT algorithm and reviews the most relevant litera-
to exhaustively proving safety is to simply search for ture. Section Ill examines three key features of the traditional
single counter example — a series of inputs, disturbancesRRT algorithm which are troublesome for testing problems;
parameters that causes a system to fail. We term this seprieposes methods to remedy them and presents simple illus-
decision approach th&sting Problem. trative examples, complete with comparative computational
Inspired by the connections between the Testing Problem &iatistics. A new algorithm unifying the enhancements is
complex control systems and the Motion Planning problemresented in Section V. The algorithm is used to solve a multi-
we have recently applied the Rapidly-exploring Random Tregent pursuit-evasion problem and performance statistics are
(RRT) algorithm [13] to the testing problem [1], [7] withdiscussed. Concluding remarks follow in Section V.

I. INTRODUCTION
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II. BACKGROUND AND RELATED WORK B. Related Work

We base our approach on the Rapidly-exploring Random
Tree (RRT) algorithm [13]. A very basic algorithm is given in
Definition 2.1: We define aFinite Time Control System Algorithms 1 and 2, where is some suitable metric angif
as a tupleC' = (X, U, T, Init, f) where is a probability distribution. RRTs are attractive because they
« X C R" is a set offree state variables: work directly in the space of admissible inputs making them
« U C R™ is a compact set of input values; suitable for systems with dynamic constraints and because

T = [to,t;] C R is a compact time interval the Systemthey areprob:_:lpilis_tically_complete[13]. While mu_ch work
evolves over: on safety verification exists, the approach of using RRTs to

Init C X is a compact set of possible initial conditions""r]""Iyze hybrid systems is recent. In [8] RRTs were used

« f: X xU — R" is a vector field which prescribes theto design trajectories of hybrid systems. The first published

time derivative of the state variables. work using RRTs for analyzing hybrid systems is [3], [15].

. . . . In a similar vein, a blimp system control law was validated
We are generally interested in systems with collections . :

L . . ) . under unpredictable but bounded disturbances [10]. In [2],
of rigid bodies with very complicated dynamics, espe; ) S .
) . ! ) . . . the reachable set for aircraft collision avoidance problem was
cially high-dimensional continuous systems or hybrid (dis

crete/continuous) and switched systems wherenay be a obtained and several extensions of the RRT approach were

. . mentioned. We have applied a variant of this method [1] to
non-smooth function oft. We do not impose any structure, ~.. L ; : .
testing hypotheses and establishing properties of biological

on the nature of the dynamics (except assuming that solutionst
exist in the sense of Fillipov). Note that in the case of rigi € Works._ . .
We review two developments from [7], used later in this

body systemsX is essentiallyCyree X TCsree. We use the ] . . . .
term “input” in the most general sense in that it can includadper: coverage estimation and the RRFT algorithm. First, the

- . : coverage of the state space with tree nodes is important both
yet unspecified feedback control inputs, human in the lo . S o
, ) ecause it can be used as a termination criteria in the event a
inputs, and disturbances.

i . e o solution is not found and because it provides a methodology
hProbIem 2.2:Testing Problem: Given a tuple(C, °, 5), for comparing the effectiveness of two algorithms that is
where not dependent on the goal position. Typicallyspersionis
o C=(X,U,T, Init, f) is a finite time control system, used [12] which is loosely defined as the radius of the largest

A. Problem Statement

o 20 € Init, and ball in X which does not contain a tree node. We reject it

« S is a specification set, on the grounds that it is difficult to compute and because,
the goal is to determine an open loop control law T — U by only focusing on the largest such ball, it yields an overly
such thatdt € T for which z(t) € S. conservative estimate of coverage. We introduce a coverage

In other words, the goal is to determine a counter-examgleasure which can be thought of as a discretized average
— an input sequence which will cause the system to fail K{jSPersion. Given an RRT7) and a set of grid points’ C X

entering S — if one exists. However, in order to make th&Vith spacingox

problem algorithmically tractable, instead of searching the set 1

of all possible functiond/ : T — U, the search must be oT,G)=1- |G| - 6

restricted to some subset of functions with finite dimensional

parametrization. Second, the Rapidly-exploring Random Forest of Trees
For the sake of convenience we make three additiod&@RFT) algorithm searches over time invariant parameters and

assumptions. First, assumié c R is defined in such a way initial conditions by planting many RRTs at a sampling of

that a point inR" can be easily tested for membershipXh Parameter values. Individual trees are grown and terminated

Second, assume the specification Setan be defined as theby monitoringc. Both ¢ and the RRFT method are used in

sub-level set of some functiof = {z|z € X,s(z) < 0}. Sect. IV.

Finally, we restrict our search ovéf to piecewise constant .

functions of time withk segments, each of time duration A90rithm 1 Generate RRTZ

Thus, instead of the continuous mépwe consider the search  Initialize RRT: 7.addVertex¢®)

overl{ : T — U, as the search for a k-vector of parameters. While Az € 7" such thats(x) < 0 do

> min(p(2?,T),6z).  (I1.1)

z9€CG

With ! € U Extend(?)
= [l b end while
so the inputu(t) is given by There have been several enhancements to the basic RRT
algorithm. In [5] a method for penalizing the repeated selection
ut) =u' €U if to+ (i — 1)t <t <t,+ (i)ot of collision prone nodes for extension is introduced. In [16] a

node selection strategy is described which increases the natural
fori=1,... k. Voronoi bias of the method for the purposes of dispersion



' proximity to z""¢ ¢ X, as determined by a distance metric
E p that is implicitly assumed to be a Euclidean metric.
However, none of the possible velocity vectors at that
o™ state (indicated as region between the thick arrows) are able
y to proceed in the required direction. Despite the fact that
ﬁ p(a?, arand) > p(xB grend) 24 s actually more suited
X to extension because the possible velocity vectors include a
direction that moves toware *"¢. In addition to testing prob-
Fig. 1. The reachable space is shown as the shaded gray region. Téns, this situation arises in a variety of robotic applications
arrows indicate the possible velocity vectors at each node. Nodes selegigdere the system is nonholonomic (e.g., wheeled carts), and

for extension on the basis of their distance frafi¢ (z8) may be difficult . . . . ..
to connect from when the system is not small time locally controliapfe. Particularly in systems with constraints on forward velocities

is a better candidate for extension. (e.g., unmanned aerial vehicles). Ideally both distance and
: velocity constraints should be used to estimate a “time to
z" ¢ X «— pdf() _ To remedy the situation in Fig. 1 we propose replacing
T arg ming; e 7 p(27, z7"9) p(27, z7*") in Line 2 of Algorithm 2 with a local first order
u™ = arg min,, g {p(xm"9, e 4 fét fz,u)dt)} approximation of the time-to-go.
ot
W — ghear f f(L ’unew(t))dt . J .rand i
’ rand p(IE ) L )/g L.f g > 0
7 .addVertex(#*) tago(?, &™) = { 00 if g<0 (I1.2)

T .addEdge(tew, zneor — gnew)

whereg represents the instantaneous speed with whi¢t?
can be approached

f(@,u)|p=gi

reduction. However, neither approach is able to reduce the { Op(x, z"end)

dispersion (which must be measured within the reachable g =mex Oz
uitively ¢24, computes the distance fron¥ to z"*"¢ and

set) for uncontrollable systems. Biasing the sampling toward
regions close to the goal state has been tried in [14], [1g]t_ 0 - _ ) ]
and [3] with some success. However the sample bias facfliyides by a first order approximation of the speed with which
the distance can be decreased, givigig units of time. Note

is fixed a priori and it can lead to difficulties in non-convex

systems because of the presence of local minima. In [10]1&t @ negative value of implies that the distance 'S actually )
reasing, which can be interpreted as infinite “time-to-go

metric accounting for under-actuated dynamics is suggest8f D€ interpreted to-
In a given iteration if none of the existing

but is specific to the aerial robots example considered therd? first order). In.
nodes have a finite value fan,,, one can be chosen at

[Il. ENHANCEMENTS TO THERRT ALGORITHM random or based on some secondary criteria (such as distance

In this section, we propose three modifications to th@s determined by).
original RRT algorithm, all designed to deal with systems that From a computational point of view the maximization may
may only traverse a small fraction of the entire state space dprl done by exhaustive search or by exploiting some problem
in which there are no obvious metrics to establish proximigependent feature. For examplefifr, u) is an affine function
relationships. Recall that the Voronoi bias coupled with thef v and the seU is the Cartesian product of rectangles, the
use of a uniform distribution decreases the dispersion of tA@ximization is a linear program in dimensions which can
tree nodes inX. However, for uncontrollable systems it maype solved efficiently. If no efficient methods exist to compute
be impossible to reduce the dispersion of the tree nodés inthis quantity, evaluating every node via this method can be
below a critical value, which is an unknown constant. Instedatensive. In such a caseéz,, can be used as a secondary
the goal is to simply find a solution quickly while reducing théfiteria to selectz"“*” among the, for example, 10 closest
dispersion of the tree nodesthin the reachable spac®, by nodes according to the Euclidean metric.

using heuristics to account for the system’s motion constraints We next consider an example that is from the verification
community. Although it is not central to robotics, it has

A. Dynamics-based selection of proximal node many of the properties that are central to multi-agent robotic

Example 3.1:Consider the trivial example systems.

Example 3.2:The hybrid automata model of a thermostat
has been a popular example in the verification literature [9].
whereu € U = [1,2]. The reachable space, which is normallyig. 2 shows the system model.= (z,72,23) € X C R3
unknown can easily be computed by hand in this case, antliere z; is the temperature in the room; is the elapsed
is shown as the shaded region in Fig. 1. A staté”? is time, andzs is a timer that measures the cumulative amount
generated and the planner must select the “closest” tree naafetime the heater has been on for. The dynamics have two
™" to attempt to connect from. Line 2 of Algorithm 2modes which denote the heater being “on” or “off”.consists
(traditional RRT) selects™**" « z¥ for extension based on of u,, = [2,4]; and Uofr = [—3,—1]. The valuesu,, and

i1=2, dp=u, (1.1)



Metric No. of | Computation
Nodes | Time (sec)

Euclidean | 2284 376.4
t2go 1627 231
TABLE T

THERMOSTAT EXAMPLE: A COMPARISON OF THE USE OF THEEUCLIDEAN
METRIC AND t24, INTRODUCED IN SECT. IlI-A, AVERAGED OVER 10

Fig. 2. TRIALS ON A 1GHz PC.

largest Voronoi
cell

XA

Turn heater on
1 2 3 4 X

Fig. 3. The solution of the thermostat counter example via the RRT usifigg- 4. The reachable space is shown as the shaded gray region, bold circles
the dynamics-based selection of proximal nodes (Temperature vs. time). and lines are the RRT, and dotted lines are the Voronoi cells. Nodes on
the boundary of the reachable space have disproportionately large Voronoi

regions, causing them to repeatedly be selected"88".

uors represent the possible heating and cooling rates in the

two modes. The conditions; < 1 andz; > 3 enable the roneatedly. Each time, the same extremal inputs will be used to
mode switches ff — on andon — of f respectively. In [9] connectyA to 277 in vain, instead resulting in. Boundary
a symbolic verification tool is used to answer the questiofgges which are repeatedly selected but fail to extend should

“After an initialization period of two minutes, is it possiblepe nenalized to counter balance this Voronoi bias so that they
for the heater to be on for more than two thirds of the totale |ess likely to be selected in the future.

time at any point during the first hour of operation?” Such a 1 5 nhode is selected for extention a&€¢®” in Line 2 of

question may be important from an energy consumption poiRfgorithm 2 and the minimization in Line 3 produces an input

of view. Therefore the specification set is u"® which has been applied previously, the resultirity®
S={reX|2/3xy —x3 <ON—x3+2< 0} is already an element of . When this happens we say the

o N node has “failed to extend”; and determine the next b&st
The initial conditions were mode: “on”, and z° = [2 0 0]7.  \which extends the tree (suggested in [5]).

Aside from being a classical verification example, the senarioFor eachz’ € 7 we propose storing the number of times

is interesting in its own right. First, the system has quithe node has failed to extend. This value can be used to
nontrivial dynamics, since the control inputs do not appegpmpute a penalty weight to discourage the repeated selection
in the right hand side of two of the state equations, or th poundary nodes which fail to extend. Lef,, and nmax
specification equations. This, together with the narrow rang@ the least and greatest valuesnéfin the tree at a given

of U, makes the reachable s&, a small subset oX. The jteration. TheHistory-based weightings defined as

set of possible velocity vectors at every point is very limited
making this an ideal example to demonstrate the Dynamics-

. Jj prand) _ . 7 _ .
based selection of proximal node. H (27, z"md; p) = pla?, 2™*%) — prmin 4 ¥~ Mmin
First the problem was solved 10 times selecting proximal Pmax = Pmin fmax n‘f‘fﬁ_g,)

nodes based on the Euclidean mefsicthen 10 times with Where pmin = ming:cq p(z', 27"4) and pmax is defined in

the Dynamics-based selection functiog,. In all cases, the 5 gimilar manner. These bounds are used to normalize the
algorithm successfully computed a counter example as s@g&ances so that the impact of the second term is not problem
in Fig. 3. Table | shows the computational statistics for tWBependent. Note that any distance function, including can

algorithms. be substituted fop.
B. History-based selection of proximal node fE:arlr)ple 363:The.RRT algorithnr’: is use(? t(;) find tra;jgctorie§
A second situation is shown in Fig. 4 where the tradition?ollqet fgmlqni?r ynamic system with bounded control inputs in

RRT is applied to the system and, after 8 iterations, the
resulting tree is shown using dark circles and line segments.
Because the reachable set is so small, nodes on the bounddrgrez € X = [—200 200] x [—200 200] andu € U =

will tend to have disproportionately large Voronoi regiong—10 10] x [—10 10].

such asr? in Fig. 4. When a uniform distribution is used to Fig. 5 shows trajectories generated by the RRT algorithm
generater™*"¢, most samples will fall outside the reachablaising the Euclidean metric (left) and using the History-based
set and these boundary nodes will be selected for extensiaighting described above (right). Note that reachable set

i=Ar+ Bu+b (I11.4)
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based selection of proximal node (right). After 5000 nodes the coverage of

the reachable space is much more dense when using the weighting.
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Our proposed probability density functid®(z; ., 3), to be
used in Line 1 of Algorithm 2, resembles a Gaussian over
some compact set, < x <b

N(x; p,0(B))+

B(x;p, ) = Ci/(b—a), a<z<b (11.6)

JRS)

1000 2000 3000 4000 5000
Nodes sorted in descending order

0 else

A where N (z; u, 0(5)) is the Gaussian distribution with mean
Fig. 6. Value ofn? for each node (sorted in descending order) using th iati _ ;
unweighted Euclidean metric (left) and History-based weighting (right). ﬁ and standard dEVIatIOdﬂ(ﬁ). The last termCt/(_b a), IS
added to ensure that the area under the curve is equal to one.
C; represents the area of the truncated portions aboveb

is small fraction of the environment. The interior of th@nd belowz = a

reachable region with the History-based selection of proximal “ e

node method is much more densely covered than Euclidean ~ C* = /_Oo N(w;p, 0)de +/b N(@; p, 0)dz,

metric. Fig. 6 showsn/ for each node in7. Nodes are .

sorted in descending order to facilitate the visualization. In Obviously x should be selected so thafu) < 0. The
the conventional RRT algorithm, a smaller portion of nodeandard deviation oV (z; 1, o(03)) effectively determines the
(on the boundary of the reachable set) have disproportionatB|§s and should be computed usifig= [0, 1]

high values ofn/. o(B) = (1 = B)(0max — Omin) + Tmin,

whereo .« ando,;, are user-defined values of the maximum
Intuitively, biasing the sampling distribution for™*”¢ to and minimum standard deviations.

generate a disproportionate number of samples inside tie set Fig. 7 illustrates the shape @ (z; u, 3) with different val-

is effective when the system is easily steered towf(de. the ues of3. Distribution (111.6) can be easily implemented using

system is output controllable with respectsia)). In general, any random normal generator and rejecting points generated

biasing the sample distribution toward the goal can make sem#side the compact domain.

but it is difficult to decidea priori which problems will benefit. ~ Example 3.4:We consider a hovercraft in constant altitude
We update the amount of biasing for eve¥y iterations of flight with 6 states,x = (21, 22,0, v1,v2,w). The dynamic

the RRT algorithm, wheréV, is user defined number. If in a€quations are

given iterationp(zmeer, zmand) > p(xmew xmend) wherep is

(I1.7)

C. Adaptively biased sample generation

a metric function, we call such an iteratisnccessfubecause mu (f1+ f2) cos(60) + forair (2, Vair (7))
the tree has grown toward™"?. We count the number of mie = (f1+ f2)sin(0) + frzair(@, Vair ()
successful iterations,, out of theng iterations where random Jo = (f2— fi)l + Tair (T, Vair(x))
states are generated inside the set defined(by < 0 and
compute The control inputs arex = [f; f2]7 (forward actuating
5= s (I11.5) fqrces) andU_: [—10,10] x [—1_0,10_]. Forces due to wind
ng disturbances in the,, 2o and@ directions aref,, air, froair:

and 7., whose exact expressions are omitted for brevity but
e ’ are quadratic in the difference between the craft's velocity
specification set or the best candidate 6" from 2"“" 414 the wind velocity,;, and vary with the orientation of the
is already in a tree in the above test, we eliminate Ah&" ¢ 4t Note that the state is partitioned into two regions (indoor
from consideration as"“*" for the testing in future iterations 4 outdoor) which define the wind velocity differently:
to prevent it from being chosen repeatedly. Valueg aflose

Vair = {

If z"¢" is not successful in growing toward®"? inside the

(1) + (z2)? <100
(I1)2 + (.T2)2 > 100 '

[—ayzo Byz]T,
[0 0]7,

to unity indicate biasing sample generation insil@as been
beneficial.



Algorithm 3 Generate enhanced-RRT:
-/ Initialize RRT: 7.addVertex{® «— z* n0 — 0)
w7 Global: g = 1
: ) while (Az € 7 such thats(z) < 0) AND Ac > Acp,in do
Y enhanced-Extend(
/ end while

N

/ \
Initial posu;ny))
-50 0 50

s /
100 150 100 200 250

Xy *y

150

Algorithm 4 enhanced-Extend()7

Fig. 8. RRTs of the hovercraft problem with uniform sampling (left) and

with adaptive bias (right).

1

0.8

0.6

@

0.4

g = (1 - ﬁ)(amax - Umin) + Omin

27 ¢ X « B(x;p, 3) (see eq.(111.6) )
gnear — arg ming; ¢ 7 [H (27, 79", t240)]
eq.(11.2),(111.3))

u™eY = arg min, ¢ g [tago ("9, 2T 4 fat [z, u)dt)]

pnew — pnear + f‘;t f(x,u"ew(t))dt

(see

if znew =279 € 7 then

0.2 n] + +
0 100 200 nsoo%'ngggs 500 600 700 U—U-—umv
‘ goto computeu™*"
Fig. 9. The evolution of the biasing factg for the hovercraft problem. end if

T .addVertex(£¢?, n"" = 0)

7 .addEdge(#c¥, x™e” — gnew)
resetU

if N, iterationsthen

_ nNns

We would like to determine if a hovercraft under these
wind conditions can reach some goal zoSe= {(x1,z2) €
[190, 200] % [0, 10]}. Note that when outdoors the wind forces _
are significantly greater in magnitude than the control inputs,end if e
making the system uncontrollable.

The initial state isz® = [0 0 0 0 0 0]7. The distribution
(11.6) was used to solve the problem 10 times on a 1GHz PC. .

Fig. 8 shows the solutions of the problem with the uniforrr%' A Multiagent Problem
sampling distribution and adaptive bias. Fig. 9 shows hbw We consider a problem where multiple autonomous vehicles
changes as the algorithm evolves. The adaptive algorithmni!St guard against an intruder entering a designated area. This
able to exploit the situations in which biasing is effective. A§cenario has applications in games such as “capture the flag”
shown in Table II, the adaptive biasing algorithm improvednd can be viewed as a variant of the art-gallery problem.

the efficiency of RRT method compared to other fixed bids Nas applications in homeland security where autonomous
strategies rather dramatically. vehicles (boats, airplanes, ground robots) can be deployed to

detect unidentified vehicles entering a cordoned-off area or an

Sampling Method| No. of Nodes| Computation Time (sec exclusion zone.
’\;Je”c;f_ogi:ls igig 1479503_’-25 In this example, we examine a circular aréa, guarded by
Heavy Bias 912 408.3 4 robots. Each robot has sensor foot prints which are assumed
Adaptive Bias %7\8B - 342.5 to be circular with radiug?, for detection and?, for capture,

as shown in Fig. 10. The guarding scheme is shown in Fig. 11.
Initially, the guard robots distribute evenly along the perimeter
of the exclusion zone. If the intruder enters the detection range
of a guard robot, the robot pursues the intruder and other
robots redistribute evenly along the ciralg;. If the intruder
escapes the detection range of the pursuing robot, the robot
IV. UNIFIED ALGORITHM . Y
N ) returns to the perimeter and all robots redistribute evenly. The

A. Unified algorithm question we wish to answer is as follows. If an intruder or an

Algorithm 3 and 4 present the unification of the enhancadversary is allowed to start anywhere in a specified refign
ments presented in the previous section. Note that, sirened the guard robots are evenly distributed on the cittle
most robotic problems are controllable, the Algorithm 1 cagan the intruder enter the exclusion zong)sincaptured? The
terminate when a solution is found. In our case, it is a distinahswer to our question can only be found by searching for an
possibility that no solution exists so we impose a secondanjtial condition and a control input function for the intruder
termination criteria. The change in coverage over the trailinghich drives it into the exclusion zone without crossing any of
N iterationsAc , measures the growth of the tree At drops the capture ranges. We assume each of the intruder and guard
below some user-definefic,,;,, we terminate the search.  robots has 5 states;’ = (z¢,z%,60% v*,w’) and 2 control

HOVERCRAFTEXAMPLE: A COMPARISON OF THE SAMPLING STRATEGY
INTRODUCED HERE(ADAPTIVE BIAS) TO FIXED-BIAS SAMPLING
STRATEGIES AVERAGED OVER 10 TRIALS ON A 1GHz PC.



inputs,u’ = (u},u}) wherez! andu! indicate states and input
of the intruder. The dynamics with nonholonomic constraints
are given by:

Initial region for intruder (S,)

Guard robot detection range (R;)

. . 9 . . . 9 . 9« . . Initial positions for guard robots e /
j)Z — Ulcos X3 lﬂz — Ulsin X3 1 — wZ Initially, evenly distributed ’ '\“‘
vt =uy, W= us. e N
We can define the free spacé = X7 x X x -+ x X5\ capture range (R,)
U, B(z'(t), R.) C R* where
X; = {(z}, 25, 0", 0", W) € R?|(2})? + (25)% < R%} Fig. 10. Initial conditions for guard robots and intruder. Each robot has a
i i 1 i 1 i 5 detection rangd?, within which the intruder is detected, and capture ragne
B(z'(t), Re) = { (21, 3)[(z7 — 271)° + (23 — 25)” < R} R. within which the intruder is captured.
Then the specification sét is defined by

S ={z € X[(21)” + (23)” < RY}

where R, is the radius of the circl€g.

To evenly distribute guard robots along the perimeter, we
use the algorithm proposed in [4]. Each guard robot is subject
to the force

A

Redistribute

b= _k 209 = C¢? F.(d?. o* V.2 Fig. 11. Guarding scheme of the robots. Distribute until the intruder is
T vy (q ) ¢+ Z T(q q ) ( ) detected (left) ; and pursue if the intruder is within the detection range of a
kenN; guard robot (right).

where ¢/ = (27,2)) € R? is the position of robotj, 1 :
R? — R is an implicit function description of the perimeter . . .
of e exclusion zone hat must e st e se 2% (%8 U s of s te 1 e same ot
of robots neighboring robgt. F,. is a Coloumb-like repulsive P P P 9

force that ensures that the robots do not cluster together, Wﬁ;}ueows the most improvement in efficiency. The fourth column

C is a constant which provides a viscous damping term. T gows a sna_p_shot of the coverage measure after 5000 nod_es
force is applied to a point that is at a finite distance awa ve been v_|5|ted for all cases. The N/A is use_d becaus_e it
from a robot to address nonholonomic constraints. A detailéchless. mean!ngful to shovy this numbr—lzr.for adaptive .sampl.lng
description of the control law including a proof of convergenc €n Improving coverage 1S hot the driving force behind using
to different shapes is provided in [4]. However, the analys}se adaptive bias.

in the paper cannot be used to predict the transients as each

. Enhancement No. of | Computation| Coverage
guard robot moves toward the perimeter. Method Nodes | Time (sec) | Measure
Note that the reachable set of states(inis a small subset of No Enhancement | 20544 9020.9 0.0190
the entire state due to the fact that the system is uncontrollable Dzir‘s"’t‘cr;:;f_z'::;;d %2197%0 g?gig 8:3222
and U is bounded. Finally, note that the intruder can start Adaptively biased | 6398 1791.6 N/A
anywhere in the sef;. In other words, the initial condition for Three Enhancements 7520 2429.2 N/A
the intruder must be chosen from this finite set, each condition TABLE IlI
leading to a RRT. GUARD-INTRUDER EXAMPLE: A COMPARISON OF THE ALGORITHM WITH
We apply the RRFT algorithm with enhancements suggest&fp wiTHoUT ENHANCEMENTS AVERAGED OVER10 TRIALS ON A 3GHz
in Sec. IV-A to the problem. The control inputs ate = PC.

(ul,ud) € U = [-6 6] x [-7/12 7/12] with R; = 300m,

R, = 100m, Ry = 100m and R, = 40m. Fig. 12 shows the
forest of trees where a solution trajectory is found, visualizing
the position of the intruder. Eight initial conditions are gener-
ated and a forest starts to grow until a solution is found. Due toThe RRT algorithm has been successful in solving complex
the space limitation, we show only the trajectories obtained forotion planning problems. We explore the application of this
the algorithm with the “dynamics-based selection of proximalgorithm and its variants to the problem of testing complex
node”. However, the Table Il shows the statistics obtained foeactive control systems and validating the effectiveness of
this example with all the options. The second column showsulti-agent controllers. Testing and validation involve search-
the average number of nodes used to find a solution trajectamg for conditions that lead to system failure by exploring
for the intruder robot (one such trajectory is shown in Fig. 12all adversarial inputs and disturbances for errant trajectories.
The third column shows the computation time with differert/nlike motion planning problems, the systems may not be
options. The first main point to note from these two columns ¢ontrollable with respect to disturbances or adversarial inputs
that the standard algorithm takes four times as long requiriagd the reachable set of states is generally a small subset

V. CONCLUSION
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Fig. 12.
trajectory of the intruder is highlighted on the right.

of the entire state space. Because of the differences betwegn

The forest of RRTs with 8 different initial conditions. A solution

(3]

(4]

(5]

Michael S. Branicky, Michael M. Curtiss, Joshua Levine, and Stuart
Morgan. RRTs for nonlinear, discrete, and hybrid planning and control.
In IEEE Conference on Decision and Control, December 2003.

Luiz Chaimowicz, Nathan Michael, and Vijay Kumar. Controlling
swarms of robots using interpolated implicit functions. IBEE
International Conference on Robotics and Automation, 2005.

P. Cheng and S. M. LaValle. Reducing metric sensitivity in randomized
trajectory design. IfProceedings of IEEE/RSJ International Conference
on Intelligent Robots and Systenmages 43—-48, 2001.

[6] Alongkrit Chutinam and Bruce Krogh. Computational techniques for

(7]

hybrid system verification. IEEE transactions on automatic control,
48(1):64-75, 2003.

Joel M. Esposito, Jongwoo Kim, and Vijay Kumar. Adaptive RRTs for
validating hybrid robotic control systems. International Workshop on
the Algorithmic Foundations of RoboticZeist, Netherlands, 2004.

E. Frazzoli, M.A. Dahleh, and E. Feron. Real-time motion planning for

testing and motion planning, we propose three modifications to agile autonomous vehicles. WAA Confernce on guidance, navigation

the original RRT algorithm. First, we develop a new distanc
function which encodes local information about the system

!

dynamics with a first order approximation. Second, because

the reachable state space is generally a small fraction of fhd

total state space, we modify the node selection strategy to

discourage the repeated selection of boundary nodes. Findll§]

we propose a scheme for adaptively modifying the sampling

probability distribution based on tree growth to the specificgr)

tion set. We demonstrate the application of the algorithm via

three simple examples and one large scale (25 dimensio

3

multi-agent pursuit-evasion and provide computational statis-
tics demonstrating a reduction of computation time by a factor

of three.
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